Even more exercises . . . ©

(Gee, and I already feared I would have to go to this dreary party tonight!)

Exercise 1

Two debtors each owe $\$ 100,000$ at an annual interest rate of 8%. Debtor A chooses a constant reduction amortization (the first annuity being $\$ 20,500$), debtor B prefers a constant annuity plan (annual payments of $\$ 40,000$). How long will both debtors take to annul their debt?

Exercise 2

Another debtor owes SHARK Bank Ltd. a total of $\$ 25,000$ that he is supposed to pay back with two payments of $\$ 20,000$ after one resp. two years. Compute the effective annual interest rate used by SHARK Bank Ltd.!

Exercise 3

Complete the following "arbitrary" amortization plan using whatever information is already provided:

Year k	Residual debt L_{k-1}	Interest I_{k}	Debt reduction R_{k}	Annuity A_{k}
1	100,000	12,000		22,000
2			52,000	
3				22,560
4				
5	0			

Exercise 4

Which of the following amortization plans would you say is more customer-friendly (using, of course, a well-established mathematical technique; in both cases, the debtor owes $\$ 100,000$) ?
a) Ten annual payments of $\$ 12,000$, beginning after one year
b) A single payment of $\$ 140,000$ after ten years

Exercise 5

$\$ 23,800$ is being invested at 12% nominal annual interest rate (compounded monthly).
a) Compute the future value after seven years!
b) Compute the effective annual interest rate!
. . . admittedly, that is an easy job . . .

Exercise 6

Explain in your own words why it is impossible to design a "constant interest" amortization scheme where the interest to be paid annually does not vary with time!

